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Abstract Models of stock-recruitment relationships
(SRRs) are often used to predict fish population dynamics.
Commonly used SRRs include the Ricker, Beverton-Holt,
and Cushing functional forms, which differ primarily by the
degree of density-dependent effects (compensation). The
degree of compensation determines whether recruitment
respectively decreases, saturates, or increases at high levels
of spawning stock biomass. In 1982, J.G. Shepherd united
these dynamics into a single model, where the degree of
compensation is determined by a single parameter. How-
ever, the difficulty in relating this parameter to biological
data has limited its usefulness. Here, we use a generalized
modeling framework to show that the degree of compen-
sation can be related directly to the functional elasticity
of growth, which is a general quantity that measures the
change in recruitment relative to a change in biomass. We
show that the elasticity of growth can be calculated from
perturbations in fish biomass, is robust to observation error,
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and can be used to determine general attributes of the SRR
in both continuous time production models, as well as
discrete time age-structured models.
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Introduction

Recruitment plays a central role in population dynamics
(Gulland 1988). Models of fish recruitment include both
density-independent and density-dependent effects. When
density-dependent effects are negligible, recruitment is gen-
erally modeled as S(B) = αB, where S(B) is the level
of recruitment when B is spawning stock biomass, and α

is the recruitment rate in the absence of density-dependent
effects (e.g., Sissenwine and Shepherd 1987). We note that
recruitment functions are often introduced as R(B), but to
prevent confusion later on (where we introduce scaled func-
tions denoted by lowercase letters, such that r could be
confused as a population growth rate), we avoid the use of
R to denote recruitment. In using spawning stock biomass,
we have followed a relatively standard assumption of fish-
ery science that fecundity is proportional to biomass (as
are other measures such as total egg production; Marshall
2009).

When density-dependent effects are non-negligible,
recruitment is anticipated to deviate from this relationship,
such that S(B) = αBF(β, B), where the function F con-
trols density-dependent effects on recruitment and β mea-
sures the intensity of density-dependent factors. Traditional
stock recruitment models introduce three general kinds of
density-dependent responses to increasing spawning stock
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biomass: (1) recruitment increases to a maximum and then
declines, (2) recruitment saturates, and (3) recruitment con-
tinues to increase but at a lower rate than in the absence of
density-dependent effects (Shepherd 1982). These alterna-
tive scenarios thus differ in the intensity of density depen-
dence (degree of compensation), which determines to what
extent recruitment is altered as a function of spawning stock
biomass.

Ricker (1954) developed a stock-recruitment relationship
(SRR) to introduce declines in recruitment at high levels of
spawning stock biomass (Fig. 1a),

S(B) = αBe−βB. (1)

As spawning stock biomass increases, recruitment increases
to the maximum S(B) = 1/β and then declines. The Ricker
model is used if there are predatory response lags, when
greater stock abundance suppresses juvenile growth or when
cannibalism or nest predation limits recruitment when B is
high (Cushing 1988).
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Fig. 1 a Recruitment S(B) as a function of spawning stock biomass
B. b The elasticity of growth sb as a function of the steady state
spawning stock biomass B∗. The distributions to the right represent
potential measurements of recruitment a and the elasticity of growth
b for Ricker, B-H, and Cushing recruitment functions. Although
measurements for SRRs overlap in a, the elasticities of the Ricker-
and Cushing-like functional families can be represented by non-
overlapping intervals. Ricker: sb ∈ [−∞, 0); Cushing: sb in (0, ∞];
the B-H function is the boundary between Ricker- and Cushing- func-
tional families, such that sb ∈ ∅. The multi-colored distribution
emphasizes that the elasticity of growth for the B-H SRR at increasing
levels of spawning stock biomass becomes a null set (warmer col-
ors of the distribution), such that the area under the curve becomes
infinitesimally small

Beverton and Holt (1957) introduced a related two
parameter model where

S(B) = αB

1 + βB
. (2)

Recruitment is thus a saturating function of spawning stock
biomass, where saturation occurs at S(B) = α/β as
B → ∞. In this case, one assumes that density-dependent
mortality affects recruitment instantaneously (see Mangel
et al. 2006) and that recruitment tends asymptotically
towards a finite value as B increases (Cushing 1988). The
Beverton-Holt (B-H) relationship is typically used if recruit-
ment is assumed to be limited primarily by food or habitat
resources (Shepherd 1982). Note that when βB is small, so
that the exponential in Eq. 1 or the denominator in Eq. 2
are Taylor expanded, we obtain S(B) = αB(1 − βB),
thus giving interpretation to the standard logistic model of
population growth.

In open systems where resources are not locally limiting,
Cushing (1973) developed a power-law SRR

S(B) = αB(βB)−1/nc = αβ−1/ncB
nc−1
nc . (3)

Here, the third parameter nc controls the rate of recruit-
ment increase at high biomass densities or the degree of
compensation. In this case, if nc > 1 recruitment contin-
ues to increase with increasing spawning biomass, but at a
decreasing rate.

In an attempt to integrate the above relationships into a
single function controlled by the degree of compensation,
Shepherd (1982) observed that the behaviors exhibited by
the Ricker, Cushing, and Beverton-Holt functions can be
united into a single framework with three free parameters

S(B) = αB

1 + βB1/n
, for n > 0. (4)

The parameters α and β again denote the initial rate of
growth and the effects of density-dependence, respectively,
while n is the degree of compensation. When n < 1, recruit-
ment increases when B is low, and decreases when B is
high, similar to the Ricker function. When n = 1, Eq. 4 is
the Beverton-Holt (B-H) SRR, where recruitment saturates
as B increases. For values of n > 1, recruitment behaves
similarly to the Cushing function, maintaining a positive
slope as B increases. The versatility of the Shepherd func-
tion comes at the cost of the additional degree of com-
pensation parameter, which is often difficult to relate to
observational data and this has served to limit its adoption.

Using observational data, we are often unable to distin-
guish which model is most descriptive of the underlying
dynamics. This has been a long-standing problem: in 1982,
Gulland noted that “in many cases, the variability of the
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data makes it difficult to choose between alternative math-
ematical models” (pg. 17). Such variation may arise from
changes in productivity (Dorner et al. 2008), phenotypic
variability (Johnson et al. 2014), or differences in life-
history (Moore et al. 2014). For instance, SRRs may be
constrained by multiple, rather than a single compensatory
event (Brooks and Powers 2007), and these species-specific
characteristics can be controlled by many different aspects
of fish reproductive biology (Morgan et al. 2011). In cases
such as these, more complex models may be required, but
this is at the cost of additional parameters, limiting the
model’s applicability to different systems. Distinguishing
between possible compensatory scenarios without assuming
knowledge of the exact form of the SRR will thus pro-
vide insight into the population dynamics of a fish species.
Bayesian nonparametric techniques provide one way to
estimate descriptive characteristics of stock-recruitment
functions based only on the data (Munch et al. 2005).
Such approaches are extremely useful as predictive tools
(Perretti et al. 2013a, b), but by definition cannot shed light
on the mechanistic processes underlying stock-recruitment
dynamics.

Here, we present an analytical approach to determine
compensatory dynamics, without assuming knowledge of
the specific SRR. We use a generalized modeling frame-
work (sensu Gross and Feudel 2006; Gross et al. 2009;
Stiefs et al. 2010; Yeakel et al. 2011; Kuehn et al. 2013)
to derive relationships between the degree of compensation
and the functional elasticities (the logarithmic derivative of
a function, giving a measure of the change of the func-
tion relative to a change in its argument) of a continuous
time generalized production model, as well as a discrete
time age-structured model. Our results demonstrate that
families of SRRs can be distinguished by these functional
elasticities, which can be estimated from the dynamics of
perturbations in fish biomass. We also show that some
stock-recruitment families can be distinguished more easily
than others, and that these differences are closely related to
the stability of populations controlled by different compen-
satory dynamics. Our use of generalized modeling in this
context lends clarity to the observation that the Beverton-
Holt function is qualitatively different than either the Ricker
or Cushing functions, existing as a boundary between two
distinct functional families, which leads to different expec-
tations for measuring SRRs in nature.

We emphasize that the approach presented here is an
alternative to—and not a replacement of—traditional meth-
ods of exploring SRRs in fisheries. In his 1948 introduc-
tion to a space-time approach to non-relativistic quantum
mechanics, Richard Feynman wrote “The formulation is
mathematically equivalent to the more usual formulations...
However, there is a pleasure in recognizing old things from
a new point of view. Also, there are problems for which the

new point of view offers a distinct advantage.” (Feynman
1948, pg 367). It is in this spirit that the use of elasticities
to investigate fisheries SRRs provides a “different point of
view” to an old problem. Our approach may offer certain
advantages, particularly when time-series data are limited,
or when historical fluctuations of population trajectories do
not obtain very low or very high values, such that traditional
methods of fitting SRRs are unsuited. Thus, our present aim
is to introduce a new perspective from which to investigate
the compensatory dynamics of fish populations.

Methods and analysis

Despite the intrinsic simplifications introduced when using
production or biomass dynamic models, they can offer
direct insight into the mechanisms governing fish recruit-
ment and thus remain an important and oft-used tool in
fisheries management (Mangel et al. 2002, 2013), so we
begin with them. We then extend our results and methods to
a discrete time age-structured system and show how func-
tional elasticities can distinguish between stock-recruitment
families and provide direct insight into the stability regimes
of populations with complex life histories.

Analysis of a generalized stock-recruitment model

In a generalized production model, we assume that biomass
enlarges according to the function S(B) and shrinks accord-
ing to the function D(B), such that biomass changes as

d
dt

B = S(B) − D(B). (5)

The enlargement function S(B) may be assumed to have
Ricker, B-H, or Cushing recruitment dynamics, whereas
D(B) is often assumed to be linear, such that D(B) =
zB, where z is the rate of biomass loss due to fishing,
natural mortality, or a combination thereof. However, in
many cases, we cannot assign a specific function to either
S(B) or D(B). The analysis of such a general model is
not straightforward, since the steady-state solution (B∗,
where S(B∗) = D(B∗)) cannot be described analytically.
In contrast, specific models present essentially the oppo-
site problem: a steady-state solution can often be computed,
however the specific mathematical relationships may not
accurately represent the dynamics of the population.

The general model presented in Eq. 5 cannot be solved at
the steady state because the functions are unknown. How-
ever, we can identify the unknown steady state(s) with the
variable B∗. If we assume that B∗ > 0 and that the signs of
the growth and loss functions are biologically meaningful,
then we can normalize the system to B∗. This allows us to
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define a set of normalized variables and functions. We set
S∗ = S(B∗) and D∗ = D(B∗), and define

b = B

B∗ , s(b) = S(B)

S∗ , and d(b) = D(B)

D∗ . (6)

This normalization procedure enables consideration of all
positive steady states in the whole class of systems defined
by Eq. 5, with the important property that at the steady state
all generalized functions and variables are equal to unity
[b = 1, s(1) = 1, d(1) = 1]. By substituting the normal-
ized variables into Eq. 5, we obtain the normalized general
production model

d
dt

b = S∗

B∗ s(b) − D∗

B∗ d(b), (7)

and under steady-state conditions (b = s(b) = d(b) = 1),
this simplifies to

0 = S∗

B∗ − D∗

B∗ . (8)

Thus, at the steady state, the scaled growth and mortal-
ity coefficients are equivalent, allowing us to define the
timescale of the system

γ = S∗

B∗ = D∗

B∗ . (9)

This parameterization is useful because γ has a biologically
relevant interpretation and represents the biomass turnover
rate at the steady state. That is, for example, S∗/B∗ has units
of production per unit of time of new biomass per unit of
existing biomass.

In generalized modeling, coefficients such as γ are
referred to as “scale parameters” (Gross and Feudel 2006).
Substituting γ into Eq. 7, the generalized equation is

d
dt

b = γ
(
s(b) − d(b)

)
. (10)

Although the normalized functions s(b) and d(b) are still
unknown, we can assess the dynamics of Eq. 10 by inves-
tigating the system under a small perturbation evaluated at
the steady state, accomplished by taking the derivative of
the normalized system. The derivative of the right hand side
of Eq. 10 evaluated at the steady state is

λ|∗ = γ

(
∂s(b)

∂b

∣∣∣∣
∗

− ∂d(b)

∂b

∣∣∣∣
∗

)
= γ (sb − db) , (11)

where sb and db are the partial derivatives of the normalized
growth and mortality functions, λ is a single eigenvalue of
the system, and |∗ indicates evaluation at the steady state
B∗. The system is stable if λ < 0 and unstable if λ > 0.
As λ moves upwards toward 0, the system approaches a
saddle-node bifurcation (Guckenheimer and Holmes 1983;
Mangel 2006b), a critical transition associated with the
sudden appearance of a stable and unstable fixed point,
changing the dynamics rapidly (Kuznetsov 1998).

The linearization of Eq. 10 reveals two additional param-
eters, sb and db, which are the partial derivatives of the
normalized functions s(b) and d(b), respectively. Partial
derivatives of normalized functions are equivalent to the
elasticities of the unnormalized functions (Gross and Feudel
2006; Yeakel et al. 2011), which we show below. In general,
elasticities provide a measure of the percent change of a
function (e.g., consider the arbitrary function F(X)) relative
to the percent change in its argument (X), where

Elasticity{F(X)} = X

F(X)

∂F(X)

∂X

= lim
Y→X

F(Y ) − F(X)

Y − X

X

F(X)

= lim
Y→X

1 − F(Y )
F (X)

1 − Y
X

≈ %&F(X)

%&X
. (12)

Elasticities can thus be thought of as dynamic measures
that describe how a function responds to a perturbation and
are commonly used in metabolic control theory (Fell 1992),
economics (Sydsaeter and Hammond 1995), and life history
theory (Horvitz et al. 1997). The elasticity of F(X) with
respect to its steady-state X∗ is alternatively written as the
logarithmic derivative of the function with respect to X∗

(Yeakel et al. 2011) and is equivalent to the partial derivative
of the normalized function f (x),

fx = X∗

F ∗
∂F

∂X

∣∣∣∣
∗
= ∂ log F

∂ log X

∣∣∣∣
∗
= ∂f

∂x

∣∣∣∣
∗
. (13)

Elasticities offer a number of advantages that are particu-
larly useful for generalized modeling. First, an elasticity of a
power-law function of the form F(X) = aXp is equal to p.
This can be shown by normalizing F(X) to the equilibrium
X∗ and taking the derivative at the steady state to obtain

fx = ∂f

∂x

∣∣∣∣
∗
= ∂

∂x

aXp

aX∗p

∣∣∣∣
∗
= ∂

∂x
xp

∣∣∣∣
∗
= p.

For instance, if the function D(B) = zB and z is con-
stant, then the elasticity is equal to unity; if the function
is quadratic, the elasticity is equal to 2; for constant func-
tions, the elasticity is equal to 0 (Gross and Feudel 2006).
For more complex functions, the value of the elasticity may
change with the value of the steady state (see below). Fur-
thermore, the elasticities of functions governing the time-
evolution of an animal population are the representative of
the environmental conditions present during measurement.
Thus, elasticities are not defined with respect to unmeasur-
able biological conditions that serve to bound traditional
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functional relationships, such as half-maximum values or
growth rates at saturation (Fell and Sauro 1985; Fell 1992).

Relating functional elasticities to the degree
of compensation

The degree of compensation in the Shepherd function
(Eq. 4) is controlled by the parameter n: if n < 1 the
function is Ricker-like, if n > 1 the function is Cushing-
like, and if n = 1 it is equivalent to the B-H function
(Shepherd 1982). In a generalized modeling framework,
the degree of compensation is related directly to the func-
tional elasticity. Given that B∗ is large enough to experience
density-dependent effects, if the elasticity of growth sb < 0
the population grows according to a Ricker-like function, if
sb > 0 the population grows according to a Cushing-like
function, and if sb → 0 the population grows according to
the B-H function. Thus, n and sb are closely related, which
can be shown by mapping the Shepherd function (Eq. 4) to
the generalized model (Eq. 10), where

s(b) = S(B)

S(B∗)
= αB

1 + βB1/n
· 1 + βB∗1/n

αB∗ ,

= 1 + βB∗1/n

1 + βB∗1/nb1/n
b.

The elasticity of growth is thus

sb = ∂s(b)

∂b
= 1 − βB∗1/n

n(1 + βB∗1/n)
. (14)

Equation 14 shows that the elasticity of growth depends on
both the steady state biomass and the degree of compen-
sation, enabling direct comparisons between Ricker-like,
Cushing-like, and B-H functions and their corresponding
elasticities. For example, as B∗ increases, if n > 1 (Cush-
ing), then sb > 0; if n < 1 (Ricker), then sb < 0; if n = 1
(B-H), sb → 0 (Fig. 1a, b). (This is more readily apparent if
the quantity (1/βB∗1/n)(1/βB∗1/n)−1 is factored into the
rightmost term of Eq. 14.) Because the value of the elastic-
ity holds for any function S(B), this generalization is not
isolated to the Shepherd equation, but extends to any func-
tion with degrees of compensation that can be categorized
as “Ricker-like,” “Cushing-like,” or “BH-like.” Thus, when
density-dependent effects are present, if the value of the
elasticity sb can be determined, a general functional fam-
ily can be assigned to the observed recruitment dynamics.
This is a key relationship, because assignment of the func-
tional family does not depend on the specific architecture of
a given function.

If we assume that recruitment follows a Shepherd func-
tion, the degree of compensation can be determined directly
from

sb = γ + α(n − 1)

αn
, or alternatively, n = γ − α

α(sb − 1)
,

(15)

where as before, γ is the biomass turnover rate, and α is the
recruitment rate at low biomass. From this relationship, we
see that if sb < 1, γ is constrained to vary between 0 and
α if n is to remain positive. Because γ is the biomass loss
rate, it is evident that values greater than α (the maximum
growth rate independent of density dependent effects) imply
extinction of the population.

The relationship between the elasticity of growth and the
degree of compensation suggests that the Cushing SRR and
Ricker SRR are qualitatively different than the B-H SRR.
The reasoning for this is straightforward: the elasticity of
growth is a continuous variable, and recruitment following
the B-H function is defined by the elasticity sb = 1, whereas
Cushing-like and Ricker-like functions have elasticities that
span a range of values. Mathematically, the elasticities of the
Ricker- and Cushing-like functional families can be repre-
sented by non-overlapping intervals (Ricker: sb ∈ [−∞, 0);
Cushing: sb ∈ (0, ∞]). If we assume that observations of
functional elasticities are normally distributed with a mean
value of s̄b, and variability proportional to the difference
between the mean and the boundary between Ricker, B-H,
and Cushing SRRs (sb = 0), using Eq. 14 to define s̄b, we
obtain an equation for the frequency distribution of observed
elasticities as a function of the steady state biomass

δB∗(sb) =
1√
2π

exp

(

−
(
βB∗1/n(n(sb−1)+1)+n(sb−1)

)2

2
(
βB∗1/n(n−1)+n

)2

)

∣∣∣∣
[

n

βB∗1/n + n
]−1

− 1
∣∣∣∣

.

(16)

If the steady state biomass is small, the distributions for
the elasticities of Ricker, B-H, and Cushing SRRs (n <

1, n = 1, n > 1, respectively) are all centered at unity; as
the steady state biomass increases, the distributions become
centered at elasticities less than zero, equal to zero, and
greater than zero, for Ricker, B-H, and Cushing SRRs,
respectively. In the case of the B-H SRR, we observe that the
distribution becomes centered at sb = 0, while its standard
deviation becomes infinitesimally small as B∗ increases,
such that in the limiting case of B∗ → ∞, δB∗(sb) is a
Dirac delta function (Dirac 1958). Thus, as the steady state
increases, the probability of correctly measuring the elastic-
ity goes to zero, emphasizing the observation that the B-H
SRR is qualitatively different than the Ricker or Cushing
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SRRs, and represents a boundary separating larger families
of functional forms.

The discrimination of different governing functional
forms (or families of functional forms) from observational
data typically requires measures of statistical best fit using
multiple years of stock-recruitment data (Munch et al.
2005). Because these data are often highly variable and
complicated by changes in birth and death rates over long
timespans, distinguishing between functional forms can be
problematic. Because the elasticities of alternative func-
tional families have non-overlapping ranges at intermediate
to high levels of spawning stock biomass, they may be
useful for determining the effects of density dependence
on recruitment (Fig. 1). Moreover, because the sign of the
elasticity can differentiate between competing functional
families, the determination of functional family from the
elasticity of growth may be relatively error-tolerant.

Measuring elasticities from time-series

We have shown that the degree of compensation can be cal-
culated if the elasticity of growth is known. There exists
a large body of literature in metabolic control theory for
measuring elasticities in experimental settings (Fell 1992).
However, these tools are not always appropriate for obtain-
ing measurements from animal populations in the wild. We
now show that the elasticity of growth can be measured
from relatively small perturbations in fish biomass, and we
provide a basic example using simulated data.

To begin, we consider single-species dynamics, where
dX/dt = F(X). We define deviation from the steady state,
such that the population size at time t is some distance away
from the equilibrium X∗ as ξ(t) = X(t) − X∗. Then to
first order dξ(t)/dt ≈ F ′(X∗)ξ . F ′(X∗) is also the sin-
gle eigenvalue of the system, λf , and we use the subscript
f to distinguish the eigenvalue in this example from the
eigenvalue λ defined for the production model. Integrating
dξ(t)/dt, we find that ξ(t) = ξ0eλf t where ξ0 is the initial
deviation and X(t) = X∗+ξ0eλf t . Thus, the eigenvalue of a
single-species system is equivalent to the rate of relaxation
to the steady state of the population trajectory after a small
perturbation if λf < 0.

Our generalized analysis of Eq. 5 shows that λ = γ (sb −
db). For now, we will assume that λ can be measured. To
determine which of the three functional families depicted
in Fig. 1a drive recruitment dynamics, we must determine
the elasticity of growth, where sb = λ/γ + db. If mortal-
ity is assumed to be governed by a linear function, such that
db = 1, then the criteria are simply defined by comparing
the magnitude of the relaxation rate, λ, to the timescale of
the system, γ (Table 1). If we assume that the steady state is
stable (λ < 0), recruitment is driven by a Ricker-like func-
tion if λ < −γ , recruitment is driven by the B-H function if

λ = −γ , and recruitment is driven by a Cushing-like func-
tion if λ > −γ (Fig. 1a). Because we do not presume to
know the exact architecture of the stock-recruitment func-
tion, these relationships are predictive of general families of
models. If we assume that growth is governed by the Shep-
herd function, the general relationship between the degree
of compensation and the relaxation rate (cf. Eq. 15) is

n = γ
γ − α

α(λ + γ db − γ )
. (17)

which can be simplified further assuming that mortality is
governed by a linear function, to give

n = γ
γ − α

αλ
. (18)

As the system approaches the saddle-node bifurcation at
λ = 0, small errors in λ are likely to generate large
errors in the degree of compensation (Eq. 18, Fig. 2), such
that Ricker-like SRRs should result in measurements that
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Fig. 2 a The rate of relaxation to the steady state λ versus the degree
of compensation n for a biomass turnover rate γ = 1. The red line at
λ = 0 denotes a saddle-node bifurcation below which the system is
stable and above which the system is unstable. b The biomass turnover
rate γ as a function of the degree of compensation n and the rate of
relaxation λ (contour lines). The trajectory shown in a is denoted by
the blue line. Values of 0 < γ < (α = 3) result in stable dynamics,
and only Cushing-like functions, where n > 1 can result in values of
λ close to the saddle-node bifurcation
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are more error-tolerant than Cushing-like SRRs. Moreover,
because an elasticity of growth sb < 1 produces dynam-
ics with a single non-trivial stable steady state (assuming
the elasticity of mortality db = 1), only Cushing-like SRRs
can come close to the saddle-node bifurcation at λ = 0.
The rate at which the saddle-node bifurcation is reached as
n increases is contingent on the biomass turnover rate γ ,
where turnover rates intermediate to 0 and α approach the
bifurcation more slowly. If the turnover rate is greater than
α, λ > 0 and the system is unstable.

Estimating the degree of compensation from fluctuations
in fish biomass

We have derived a relationship between the degree of com-
pensation n and the elasticity of growth sb, and have shown
how—in principle—elasticities could be measured from
short-term fluctuations in time-series data. To elaborate this
idea, we constructed a stochastic model with growth follow-
ing the Shepherd function and mortality due to both natural
causes M and fishing F , coupled with observation error. We
perturbed the system at time t = ti by eliminating the fish-
ing mortality term (the end of a fishing period) until a steady
state was reached at the terminal time t = T . We included
normally distributed observation error P̃ with mean zero
and standard deviation σ . Accordingly, observations of fish
biomass Bobs(t) are then

d
dt

B = αB

1 + βB1/n
− (M + δf F )B,

Bobs(t) = B(t) + σ P̃ ,

where δf controls fishing mortality. During the fishing time
interval t0 ≤ t < ti , δf = 1; during the non-fishing time
interval ti ≤ t < T , δf = 0 (Fig. 3).
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Fig. 3 An example of the transition from a fishing to a non-fishing
interval used to measure the rate of relaxation λ from time-series data.
The non-fishing interval is initiated at t = ti , and biomass values
immediately after ti can be used to find the maximum likelihood esti-
mate for λ. The best-fit trajectory using the likelihood technique is
shown in red

Given the Gaussian assumption about the observation
error, we assume that the system trajectory behaves as
Bobs(t) ∼ N{c(1 − e−λt ), σ } close to the steady state. The
stochastic trajectory thus depends on the unknown variables
c, λ, and σ , which we determine using a likelihood approach
where k is the number of observations from the end of the
fishing period until the trajectory reaches its steady state in
the absence of fishing at t = T . This problem can be sim-
plified, as the variables c and σ can be written in terms of λ

to obtain the log-likelihood (Hilborn and Mangel 1997)

logL (λ)=−k

2
log(2π) − k

2
log

⎧
⎨

⎩
1
k

(
T∑

t=ti

B(t)−c(1−e−λt )

)2
⎫
⎬

⎭ − k

2
,

(19)

where c = ∑T
t=ti

B(t)(1 − e−λt )/
∑T

t=ti
(1 − e−λt )2. This

relationship is then used to find the maximum likelihood
estimate for the eigenvalue λMLE.

We aim to discriminate between different families of
functional forms using the maximum likelihood estimate
for the rate at which a population trajectory returns to its
steady state after a perturbation. When the rate of relaxation
is known, the degree of compensation can be calculated
from Eq. 18. To determine the accuracy of our model esti-
mates across different degrees of observation noise, we
calculated λMLE as a function of the coefficient of varia-
tion (CV = σ/B∗) for three compensation scenarios: Ricker
(n = 0.5), Cushing (n = 1.5), and B-H (n = 1). After
estimating λMLE, we calculated the degree of compensation,
nMLE from Eq. 18, and determined the probability that the
correct value of n was estimated with an accuracy of ±0.2
(Fig. 4a,b), as well as the probability that the functional
family was correctly identified (Fig. 4a,c).

Results

Sensitivity to observation error

The analytical relationship between the degree of compen-
sation n and the elasticity of growth sb (Eq. 18) suggests that
populations growing in accordance to Ricker-like functions
should be less difficult to measure accurately than those
growing in accordance to Cushing-like functions (Fig. 2a).
Our simulation experiment showed that the rate of relax-
ation can be estimated from moderately noisy data and that
there were large differences in the measurement accuracy
for different functional families. As predicted, the estimated
rate of relaxation λMLE, and by transformation nMLE, is esti-
mated more accurately for Ricker-like and B-H functions
than for Cushing-like functions (Fig. 4a). We note that the
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Fig. 4 a Estimation of the degree of compensation as a function
of the coefficient of variation for simulated population trajectories
(1,000 replicates); Ricker (R), red; Beverton-Holt (B-H), blue; Cush-
ing (C), green; circles denote medians. b The probability of correctly
estimating the degree of compensation within a certain amount of
error (Ricker: n = 0.5 ± 0.2; B-H: n = 1 ± 0.2), and Cushing:
n = 1.5 ± 0.2. c The probability of correctly estimating the correct
SRR family (Ricker: n < 1; B-H: n = 1; Cushing: n > 1)

mean value of our estimates always diverged from the set
value of n because the rate of return equation is only accu-
rate at values very close to B∗ and is therefore a necessarily
crude estimate of the solution to Bobs(t).

The probability that the degree of compensation was esti-
mated to within ±0.2 of the set value declined nonlinearly
for all SRRs, asymptoting at a probability of ≈ 0.2 for
Ricker and B-H, and ≈ 0.1 for Cushing at CV = 2, the lat-
ter result due primarily to the greater range of n defining the
Cushing functional form (Fig. 4b). Perhaps the more impor-
tant issue relates to the probability that the functional family
can be correctly determined with respect to other functional
families. Our results showed that the probably of correctly
determining the functional family from λMLE remained rela-
tively high as the CV increased (Fig. 4c) for both Ricker-like
and Cushing-like functions. The probability that Ricker-like

functions were correctly distinguished was generally greater
than 0.8 for CV ≤ 2, while the probability that Cushing-
like functions were correctly distinguished was greater than
0.5 for CV ≤ 2. Because the B-H function is a boundary
between functional families (see Methods), the probability
that it was correctly distinguished was always 0.

Sensitivity to time-series length and process stochasticity

The accuracy of measurements for the elasticity of growth
in the field will depend on the additional sources of bias
and variability other than observation error. In particular,
we briefly examine two important sources of variability that
may impact estimation accuracy (1) the number of obser-
vations in a time-series and (2) variability of the intrinsic
growth rate α (process noise) and the biomass turnover
rate γ .

The number of observations in a time-series k is used in
Eq. 19 to calculate the maximum likelihood estimate for λ;
changes in k will thus affect estimates of λ. To test this,
we performed a simulation experiment, where we calculated
the probability of correctly identifying Ricker-like versus
Cushing-like SRRs as a function of both CV and the num-
ber of observations. We found that, as long as the population
reproduces quickly enough to attain its post-perturbation
equilibrium within the time-frame in question (this is a
fundamental feature of our approach), the number of obser-
vations does not adversely affect the use of elasticities to
estimate the nature of compensation (Fig. 5a).

Variability in the intrinsic growth rate of a population
is a common source of uncertainty, particularly for popula-
tions spanning multiple spawning grounds or where primary
productivity is prone to seasonal or annual fluctuations
(Mangel 2006a; Dorner et al. 2008). In contrast to vari-
ability in the number of observations, we can derive an
analytical approximation for the effect that process noise
and timescale variability have on estimating the degree of
compensation. To determine how variability in α and γ

influences our estimation of the degree of compensation,
we first establish α and γ as random variables and solve
for the expectation of the degree of compensation, E{n}, as
a function of the expectation and variance of α (E{α} and
Var{α}, respectively), the biomass turnover rate γ (E{γ }
and Var{γ }, respectively), and the covariance between α

and γ (Cov{α, γ }). The expectation can be approximated
by implementing the Delta Method (Hilborn and Mangel
1997), so that to second order

E{n} ≈ 1
λE{α}3

(
E{γ }

[
E{α}3 + 2E{α}Cov{α, γ } (20)

−E{γ }
(

E{α}2 + Var{α}
)]

− E{α}2Var{γ }
)

.
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Fig. 5 a The probability of
correctly identifying
Cushing-like and Ricker-like
functional families as a function
of observation error CV = 0 to 2
and the number of observations
k = 20 to 200. b E{n} as a
function of E{α} versus Var{α}.
c E{n} as a function of E{γ }
versus Var{γ }
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If we assume that Cov{α, γ } is small, we observe that
as Var{α} increases, the degree of compensation changes
only slowly, which in turn is dampened as α becomes larger
(Fig. 5b). Thus, we find that variability in the growth rate
does not have a large influence on estimating the degree
of compensation, except when the system is close to the
saddle-node bifurcation at α = γ .

As expected from the relationship defined between λ and
γ (Table 1), we find that it is more important to constrain
estimates of the characteristic timescale of the population
dynamics (Fig. 5c) or in this case the biomass turnover
rate. Obtaining accurate measurements of the characteristic
timescale of population dynamics is essential for determin-
ing system behavior in many contexts (Auger and Poggiale
1996; Mchich et al. 2002) and is a strict requirement for

Table 1 Criteria for determining the elasticity of growth sb from
the rate of return to the steady state after a perturbation, λ, for the
production model

Model Elasticity (B∗ ≫ 0) Criterion

Ricker-like sb < 0 s.t. λ
γ + db < 0 λ < −γ db

Beverton-Holt sb = 0 s.t. λ
γ + db = 0 λ = −γ db

Cushing-like sb > 0 s.t. λ
γ + db > 0 λ > −γ db

The non-overlapping intervals for the elasticity of growth uniquely
identify of Ricker-like, Beverton-Holt, and Cushing-like recruitment
dynamics

the utilization of the approach that we describe here. The
biomass turnover rate for a population can be estimated in
a variety of direct and indirect ways. For example, biomass
turnover tends to vary predictably with species body mass
(Calder 1996), and allometric scaling relationships may
prove useful for determining an initial baseline for γ . Direct
measurement of biomass turnover can be approached via
tag-recovery or capture-recapture methods (Kleiber et al.
1987), and because the inverse of γ is the average life-
expectancy of individuals within the population, could be
estimated from sequential measures of body mass or length
distributions. Although we do not treat this issue in detail
here, combining these approaches within a Bayesian hier-
archical model would permit the biomass turnover rate to
be expressed as a distribution, thus related to the expec-
tation for the degree of compensation as presented in
Eq. 20.

An example with age structure

Production models effectively summarize the recruitment
dynamics of fish populations and in some cases can pro-
vide robust measures of fisheries reference points (MacCall
2002; Mangel et al. 2010, 2013). However, the influence
of age-related differences in growth and mortality can
have large effects on the dynamics of fish populations
(Mangel et al. 2006; Shelton and Mangel 2011). In this



Theor Ecol

section, we build upon our prior results and expand the gen-
eralized modeling schema to discrete time, age-structured
models. The extension of generalized modeling to discrete
time systems is useful in its own right, as it provides a
method for the dynamical analysis of whole classes of dis-
crete time models (sensu Gross and Feudel 2006). First,
we briefly illustrate an extension of the generalized mod-
eling approach to an age-structured discrete time system.
Second, we show how the degree of compensation in an age-
structured system is related to the elasticities of growth and
finish by showing how measurements of elasticities in the
age-structured model provide important insight into system
stability.

We consider an age-structured model where the num-
ber of recruits X(t + 1) is governed by spawning stock
biomass, Bs(t), depending on the degree of compensation n.
The number of individuals in the mature age class Y is the
sum of returning adults and incoming recruits, where adult
mortality is given by My and recruit mortality is given by
Mx . It follows that spawning stock biomass is calculated by
the number of mature individuals times the average mass of
individuals Wy . The age-structured model is thus

X(t + 1) = F(Bs, t) = αBs(t)

1 + βBs(t)1/n
,

Y (t + 1) = G(X, t) + H(Y, t) = X(t)e−Mx + Y (t)e−My ,

Bs(t + 1) = K(Y, t) = Y (t)Wy. (21)

We can determine the steady state condition X∗ (where
X(t + 1) = X(t)) in terms of spawning stock biomass B∗

s

because at the steady state B∗
s = Y ∗Wy , such that

B∗
s = X∗ e−Mx Wy

1 − e−My
= X∗W ∗

f . (22)

The primary difference between the age-structured and
production models is that mortality is not assumed to occur
simultaneously with recruitment, and this yields dynamics
that diverge strongly from those predicted by the produc-
tion model. We note that this 3-dimensional model can be
slightly modified and collapsed such that Bs(t) = Y (t)Wy ,
and this has a little effect on the qualitative dynamics.

The normalization of the age-structured system is anal-
ogous to the normalization of the production model (Eq.
7), however because the age-structured system is com-
posed of difference rather than differential equations, the
steady state condition requires that the scale parameters are
defined differently than before. For example, y(t + 1) =
(G∗/Y ∗)g(x, t) + (H ∗/Y ∗)h(y, t) is defined at the steady
state 1 = G∗/Y ∗ +H ∗/Y ∗, such that we define the ratio of
incoming recruits to the abundance of the mature age-class
γy = G∗/Y ∗ and the ratio of returning adults to the abun-
dance of the mature age-class (1 − γy) = H ∗/Y ∗. These
coefficients are thus the proportional contributions of recruit

and mature age-classes to spawning stock biomass at the
steady state. The generalized system is then

x(t + 1) = γxf (b, t),

y(t + 1) = γyg(x, t) + (1 − γy)h(y, t),

b(t + 1) = γbk(y, t). (23)

We can immediately simplify the problem by observing that
the scale parameters for recruits and biomass can be reduced
to

γx = F ∗

X∗ =
αW ∗

f

1 + β(W ∗
f X∗)1/n

= 1,

γb = K∗

B∗
s

= 1. (24)

For the production model, elasticities were defined with
respect to the linearized system (Eq. 11). Because the age-
structured system is multi-dimensional, the linearization
is defined by the Jacobian matrix evaluated at the steady
state J|∗, where each element is defined by the partial
derivative of each difference equation with respect to each
variable. The elasticities of the generalized system can then
be calculated, such that

J|∗ =

⎛

⎜⎜⎜⎝

∂F
∂X

∣∣
∗

∂F
∂Y

∣∣
∗

∂F
∂Bs

∣∣∣
∗

∂G+H
∂X

∣∣
∗

∂G+H
∂Y

∣∣
∗

∂G+H
∂Bs

∣∣∣
∗

∂K
∂X

∣∣
∗

∂K
∂Y

∣∣
∗

∂K
∂Bs

∣∣∣
∗

⎞

⎟⎟⎟⎠
=

( 0 0 fb
γy (1 − γy) 0
0 1 0

)

,

(25)

where for the specific age-structured model, γy = 1 − e−My ,
and the elasticity of growth is

fb = ∂f (b)

∂b

∣∣∣∣
∗
=

αW ∗
f (n − 1) + 1

αW ∗
f n

. (26)

The Jacobian matrix determines the stability of the sys-
tem; we solve for the eigenvalues that satisfy the character-
istic equation Det(J|∗−λI) = 0, where I is the identity matrix.
From Eq. 26, the characteristic equation is fbγy +λ2 −γyλ2 −
λ3 = 0, which yields three distinct eigenvalues, and though
the solutions for these eigenvalues are large and unwieldy,
they can be easily derived with algebraic computing lan-
guages such as Maple or Mathematica. We have thus derived
a generalization for the stability of the age-structured model
with two measurable parameters: the proportional contribu-
tion of recruits to the adult age class γy and the elasticity of
growth fb. We note that, in theory, the elasticity of growth
in the age-structured case can be estimated from time-series
data as before, but where the rate of return after a pertur-
bation is measured across two dimensions: the number of
recruits versus the number of adults.

Simulation of the specific age-structured system (where
α = 8, β = 1/80, Mx = 0.2, My = 0.7, and Wy = 2)
across a range of values for the degree of compensation
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reveals a single steady state for n > 0.376. For n < 0.376,
stable cycles emerge, which in turn give rise to five-period
cycles for lower values of n (Fig. 6a,b). In discrete time
systems, the emergence of cyclic conditions can result
from crossing a Neimark–Sacker bifurcation (cf. Guill et
al. 2011a, b), which occurs when a pair of complex con-
jugate eigenvalues cross the unit circle on the complex
plane. If λ1 and λ2 are the complex conjugate eigenvalue
pair, the test function for this condition is λ1λ2 = 1
(Kuznetsov 1998). Using solutions for λ1 and λ2 from the
characteristic equation, we numerically determined that a
supercritical Neimark–Sacker bifurcation is crossed at n =
0.376 (Fig. 6a,c). Supercritical Neimark–Sacker bifurca-
tions yield stable closed invariant curves, such that local
trajectories initiated interior and exterior to the cycle are
attracted to the curve (Fig. 6b; Kuznetsov 1998). Predic-
tions of population dynamics are thus possible, but only if
the degree of compensation, in addition to the other param-
eters, is known. As with the specific production model,
the specific age-structured model introduces strong assump-
tions regarding functional forms, and these assumptions
may not hold (or be conducive to measurement) in many
situations.

Because the degree of compensation is related directly
to the elasticity of growth (Eq. 26), we can use the
generalized age-structured system to gather direct insight

into the potential dynamics applicable to any class of models
substituted into the general functions F(B), G(X), H(Y), and
K(Y). Although the test function for the Neimark–Sacker
bifurcation is not analytically tractable (even for the gener-
alized system), we can numerically simulate the relationship
between the elasticity of growth fb, the proportion of matur-
ing recruits to the mature age class γy (which has a value
of 0.50 in the simulated age-structured model), and the
test-function λ1λ2.

Our numerical results show that only Ricker-like SRRs
can result in cyclic dynamics (λ1λ2 ≥ 1; Fig. 6d). More-
over, we observe that cyclic dynamics can only emerge
if fb ≤ −1 for any potential value of γy , and this result
applies to all potential SRRs. Accordingly, as the ratio of
maturing recruits declines (low γy ; realized as the mortal-
ity of the mature age-class My decreases), cyclic dynamics
are less likely to occur unless the elasticity of growth is
extremely low, which is biologically unreasonable. As the
ratio of maturing recruits increases (higher mature age-
class mortality), the opposite occurs, and cyclic dynamics
are more likely for a broader range of Ricker-like SRRs.
We have thus obtained a very powerful result: indepen-
dent of the particular functions introduced into the general
age-structured system, cyclic dynamics require (1) that
spawning stock biomass includes a relatively large
proportion of incoming recruits and 2) that compensatory
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Fig. 6 a Bifurcation diagram showing the onset of cycles followed
by multi-period oscillations for the age-structured model as the degree
of compensation lowers beyond n = 0.376. b Examples of the corre-
sponding dynamics where n = 0.70, 0.376, 0.30, and 0.10. c Values
of the test-function λ1λ2 across different values of n for the specific
model. A Neimark–Sacker bifurcation exists at λ1λ2 = 1, which is

crossed at n = 0.376. This condition exists when two complex con-
jugate eigenvalues cross the unit circle on the complex plane (inset).
d Numerically estimated values for the test-function λ1λ2, given the
elasticity of growth fb and the ratio of incoming recruits to the mature
age-class γy . The red contour denotes the Neimark–Sacker bifurcation
condition; systems below this contour have cyclic dynamics
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dynamics are driven by a Ricker-like function, where the
elasticity of growth has a value ≤ −1.

The relationship between recruitment, the elasticity of
growth, and cyclic dynamics has predictive power, in par-
ticular because it is general without assumptions regarding
the exact shapes of functional responses. For example, pink
salmon (Oncorhynchus gorbuscha) are a widespread species
with complex population dynamics (Radchenko et al. 2007).
Depensatory dynamics are responsible for a large source
of embryo mortality as spawning individuals compete for
viable nests, such that Ricker-like models are generally pre-
dictive of stock recruitment relationships (May 1974; Myers
et al. 1995). Moreover, pink salmon are semelparous, such
that there is a little or no overlap in spawning stock biomass
between generations. In our generalized modeling frame-
work, this corresponds to an elasticity of growth fb < 0,
and complete turnover of the adult age-class, such that γy is
close to unity. From Fig. 6d, we observe that cyclic dynam-
ics are inevitable if fb < −1 as γy → 1. In nature, pink
salmon populations are strongly cyclic, generally on the
order of 2-year cycles, and this is thought to be caused by
density-dependent mortality reinforced by external sources
of stochasticity (Krkosek et al. 2011). Thus, we observe that
by relating the elasticity of growth to stability regimes,
knowledge of general aspects of population dynamics—
without assuming specific functional relationships—can
provide direct insights into the compensatory dynamics of
age-structured populations.

Discussion

We have shown that the elasticity of growth in a general-
ized production model can be related directly to the degree
of compensation parameter that determines Ricker-like,
Cushing-like, or Beverton-Holt behaviors. The elasticity
of growth is useful because it is defined with respect to
the biological and environmental conditions present during
measurement, and thus can be estimated from limited time-
series data. Moreover, because large ranges of the elasticity
of growth, and by extension the rate of relaxation, char-
acterize families of functional forms, these measures are
relatively error tolerant (Fig. 4c), particularly if the goal is to
distinguish between SRRs with Ricker-like or Cushing-like
recruitment dynamics.

The functional elasticities of both production and age-
structured models can be used to determine directly the
compensatory dynamics driving SRRs. This method may be
of most use to recent fisheries, where long-term time-series
data do not yet exist. Because we have employed elasticities
in a generalized modeling framework, they are well-suited
to inform knowledge of the general nature of compensa-
tion, and thus may be particularly useful for developing

priors for parameters in flexible SRRs, such as the degree of
compensation in the Shepherd model.

Our exploration of elasticities operates under the expec-
tation of shifting-equilibrium dynamics, thus assuming
that there are strong regulatory mechanisms driving the
reproductive dynamics of populations (Murdoch 1994). This
assumption should have local validity over short timescales.
Moreover, the approach does not assume a specific equilib-
rium (thus holding for all potential equilibria) such that it
may be applicable to populations under constant perturba-
tions, where the equilibrium is a moving target. Although
estimating the rate of relaxation necessarily requires that the
system has attained (or is approaching) a post-perturbation
steady state, important information regarding the degree
of compensation can be estimated even when the intrinsic
variability approaches the same magnitude as the external
perturbation (Fig. 4). This depends on some knowledge of
what external forces—and the time-frame over which they
operate—induce the perturbation, such that our example of
using a moratorium on harvesting to estimate the rate of
relaxation carries with it a certain practicality.

Elasticities describe the system in its current state.
Accordingly, much can be learned about the nature of a pop-
ulation’s compensatory dynamics if the elasticity of growth
can be determined as the steady state shifts over time. We
suggest that determining to what extent elasticities can be
measured with respect to perturbations of different magni-
tudes and across different temporal spans may be of future
research interest, as is investigating new and different ways
to measure elasticities in wild populations .
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